The Synthesis of Phycopsisenone, a New Phenolic Secondary Metabolite from the Sponge *Phycopsis* sp.

G. L. Kad,* Vasundhara Singh, Anupam Khurana, and Jasvinder Singh

Department of Chemistry, Panjab University, Chandigarh 160014, India

Received August 19, 1997

A short first total synthesis of phycopsisenone (1) utilizing microwave irradiation-induced aldol condensation and $TiCl_4$ -catalyzed reaction of silyl enol ether (3) with acetone as key steps has been achieved in 29.4% overall yield.

Several prenylated aromatic compounds have been isolated from marine flora and fauna¹ and are known to be biologically active. Venkateswarlu et al.² investigated the sponge *Phycopsis* sp. collected from the Tuticorin coast, Tamilnadu, India. A CH_2Cl_2 -MeOH (1:1) extract of this organism exhibited antibacterial activity against *E. coli* and *B. subtilis*. One of the components of this extract was phycopsisenone (1), the structure of which was assigned on the basis of its spectroscopic studies.² We wish to report a simple synthesis of compound 1 (Scheme 1).

Microwave irradiation-induced aldol condensation of 4-hydroxybenzaldehyde and acetone in aqueous NaOH solution afforded the α,β -unsaturated ketone in 65% yield. Compound **2** on treatment with trimethylchlorosilane and DBU as a base at 40 °C for 30 min gave the enol ether **3**.³ Further condensation of **3** with acetone using TiCl₄⁴ as the Lewis acid at -78 °C furnished the title compound **1** after column chromatography using petroleum ether–EtOAc (9:1) in 60% yield (29.4% overall yield). The spectral data of the synthetic sample agree well with those reported in the literature.²

Experimental Section

General Experimental Procedures. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a 300 MHz Bruker spectrometer using TMS as internal standard. IR spectra were recorded on a Perkin-Elmer 337 spectrophotometer. Mass spectra were determined on VG 70S with an 11-250 J+ data system. A BPL domestic microwave oven with a power output of 700 W was used. Unless otherwise stated, all organic extracts were dried over anhydrous sodium sulfate. Silica gel (ASC, Bombay) impregnated with calcium sulfate was used for TLC.

4-(4'-Hydroxyphenyl)but-3-en-2-one (2). To a clear solution of 4-hydroxybenzaldehyde (2.5 g, 20.4 mmol) in 10% NaOH (7 mL) was added acetone (7.0 g, 120.6 mmol) at 25 °C followed by remaining 10% NaOH

solution (10 mL) in open beaker covered by a watch glass and subjected to microwave irradiation for 15 min at a power level of 150 W. The deep red solution was acidified with 10% HCl solution and extracted with ether (4 × 25 mL). The combined organic extracts were dried and evaporated to obtain crude product **2**, which was recrystallized from benzene to afford **2** as yellow solid: mp 102–103 °C (2.15 g, 65%); IR (KBr) ν_{max} 3450 (OH), 1680 (C=O), 1640, 1540 cm⁻¹; ¹H NMR δ 2.6 (3H, s, H-1), 6.2–6.3 (1H, d, H-3, J= 13.5 Hz), 6.5–6.7 (2H, d, H-3' and H-5', J= 7 Hz), 7.0–7.4 (3H, m, H-4, H-2' and H-6').

1-[4'-(Trimethylsiloxy)phenyl]-3-(trimethylsiloxy)buta-1,3-diene (3). A dry solution of 2 (0.5 g, 3.08 mmol) in CH₂Cl₂ (10 mL), trimethylchlorosilane (0.86 mL, 6.7 mmol), and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 1.12 g, 7.3 mmol) under N₂ was stirred at 40 °C for 2 h. The mixture was diluted with hexane (10 mL), washed successively with 1% HCl (2 × 10 mL) and 5% NaHCO₃ (2 × 10 mL), dried, evaporated, and distilled to give **3** (0.37 g; 39%): IR (neat) ν_{max} 1660, 1635, 1640, 1560 cm⁻¹; ¹H NMR δ 0.17 (18H, s, Si(CH₃)₃ × 2), 4.2 (2H, d, H-4, J = 1.7 Hz), 6.2–6.3 (1H, d, H-2, J = 13.5 Hz), 6.5–6.7 (2H, d, H-3' and H-5', J = 7 Hz), 7.0–7.4 (3H, m, H-1, H-2' and H-6').

5-Hydroxy-1-(4'-hydroxyphenyl)-5-methyl-1-hexen-3-one (1). Acetone (0.1 mL, 5 mmol) and anhydrous CH_2Cl_2 solution (10 mL) were cooled to -78 °C under N₂, and TiCl₄ (0.17 mL, 5 mmol) was added. Silyl enol ether 3 (0.355 mg, 5 mmol) was added dropwise to this solution and stirred for 3 h at -78 °C followed by stirring at room temperature for 16 h. The dark red solution was quenched with aqueous NaHCO₃, stirred for 5 h, and then extracted with ether (5 \times 10 mL). The ether extract was dried and evaporated to give a crude product that was purified by column chromatography using petroleum ether-EtOAc (9:1) as an eluent to give a pure colorless solid 1 (0.153 mg, 60%): mp 135 °C; IR (KBr) ν_{max} 3450 (OH), 1680 (C=O), 1640, 1560 cm⁻¹; ¹H NMR (CDCl₃) δ 1.3 (6H, s), 2.8 (2H, s, H-4), 6.5 (1H, d, H-2, J = 13.5 Hz) 6.8 (2H, d, H-3' and H-5', J = 7Hz), 7.45 (2H, d, H-2' and H-6', J = 7 Hz), 7.5 (1H, d, H-1, J = 13.5 Hz); ¹³C NMR (CDCl₃) δ 201.7, 158.4,

S0163-3864(97)00394-7 CCC: \$15.00 © 1998

0 © 1998 American Chemical Society and American Society of Pharmacognosy Published on Web 02/03/1998

 $^{^{\}ast}$ To whom correspondence should be addressed. Tel.: 0172-541435. Fax: 0172-541409.

Scheme 1. Synthesis of Phycopsisenone

143.7, 130.5, 126.7, 124.5, 116.1, 70.6, 50.5, 29.4, 29.2; EIMS (70 ev) m/z [M⁺] 220, 202, 162, 147 (100), 107; anal. C 70.70%, H 7.21%, calcd for C₁₃H₁₆O₃, C 70.88%, H 7.32%.

Acknowledgment. The authors are thankful to UGC, New Delhi, for financial support.

References and Notes

- (1) Faulkner, D. J. Nat. Prod. Rep. 1984, 1, 251.
- (2) Venkateswarlu, Y.; Farooq Biabani, M. A.; Rao, J. V. J. Nat. Prod. **1995**, 58, 269–270.
- (3) Taniguchi, Y.; Inanaga, J.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1981, 54, 3229–3230.
- (4) Chan, T. N.; Stössel, D. J. Org. Chem. 1986, 51, 2423-2428.

NP970394G